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Introduction 
 

New Zealand’s planted forests are mainly established on low valued land, especially land that is 

not useful for pastoral agriculture. Much of the low value land is found in hill country, which is 

characteristically heterogeneous, which results in heterogeneous production within the stand 

(Apiolaza et al., 2011; Millner & Kemp, 2012). The issue of heterogeneity has previously been 

reported for juvenile trees (Ares & Marlats, 1995; Bathgate et al., 1993; Larson et al., 2008). 

Radiata pine (Pinus radiata) is widely planted throughout NZ and its growth is generally not 

greatly affected by microsite heterogeneity.  However, reductions in growth have been reported 

under extreme conditions, such as high altitude or low rainfall zones (Kirschbaum et al., 2011). 

Where radiata pine productivity is limited by environmental conditions, other species may be more 

suitable. For example, Eucalyptus bosistoana and E. globoidea, the subject of this research, may 

be better suited to dry environments. While these species are potentially better suited to very dry 

environments, there is anecdotal evidence that their growth is highly variable within a site, due to 

environmental heterogeneity. Though Eucalyptus spp. play only a minor role in New Zealand 

forestry at present (Apiolaza et al., 2011), there is potential for them to be more widely planted if 

forest managers were more confident in their growth potential. This requires a better understanding 

of their growth and survival on a variety of sites.  

The Eucalypt Action Group produced a first step in this direction with their small-scale siting maps 

for 16 different Eucalyptus species. These maps provided an understanding of potential Eucalyptus 

spp. suitability at a regional scale.  Unfortunately, the resolution of these maps prevents their use 

in an operational setting and so it is unlikely that these maps alone will provide forest managers 

with the confidence they need to plant Eucalyptus. The next step towards this will need to explore 

Eucalyptus spp. response to its growing environment at a finer resolution. This will allow 

managers to effectively match species to individual sites. 
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Materials and Methods 
 

Study sites 
Four experimental sites for micro-site study have chosen. The sites are planted with two species 

of interest Eucalyptus bosistoana and Eucalyptus globoidea. Three sites are situated in 

Marlborough and the fourth site is situated in Hawke’s Bay, New Zealand. All the sites have 

predominantly warm, dry and settled weather during the summer months. Winter days often start 

with a frost, but are usually mild overall. Typically, summer daytime maximum air temperature 

ranges from 20℃ to 26℃, but occasionally rise above 30℃. On the other hand, winter daytime 

maximum air temperature ranges from 10℃ to 15℃ (NIWA, 2015a). 

The soils at these sites formed from loess and are classified as pallic argillic soil (New Zealand 

Department of Scientific and Industrial Research, 1968) commonly categorised as flaxbourne soil. 

Pallic argillic soils are clay accumulations found as thin subsoil bands. They occur predominantly 

in the seasonally dry eastern part of the North and South Islands and in the Manawatu. They cover 

12% of New Zealand. According to The Land Resource Information System (2015) the sites have 

very low productivity, high slope.  

The soil data and average climatic data provided above highlight a problem that this research will 

attempt to resolve. There is almost certainly differing environmental conditions between and even 

within the four study sites. But, nationally available climatic and soil data are at too coarse a spatial 

resolution to show heterogeneity. This study will undertake environmental micro-site 

characterisation to resolve this issue.  

Data collection 

Tree data 

There are approximately 30,000 trees at the four experimental sites. The height (h), diameter at 

breast height (DBH), tree family (genotype) and tree status (dead or alive) was measured for all 

trees. All tree measurement was undertaken during November-January and June-August for past 

two years. Figure 1 shows a simple trajectory of the height growth of E. globoidea over time at 

different plots in Avery’s site. 



 

Figure 1. E. globoidea height with time at different plots 

Topographic data 

A digital elevation model (DEM) for all the sites was produced using a survey grade global 

navigation satellite system (GNSS). GNSS points were established on an approximately regular 5-

meter grid at each site. The GNSS points were interpolated into a DEM for each site. Different 

methods (Figure 2) and resolutions (Table 1) were tested to optimise the interpolation process. 

Candidate DEMs were tested using a leave one out validation technique, whereby 90% of GNSS 

points were used to interpolate the DEM and 10% of GNSS points were used to validate the DEM. 

Absolute error (AE) (Eq 1), Sum of absolute error (SE) (Eq 2) and Mean absolute error (MAE) 

(Eq 3) were calculated and compared for candidate DEMs with differing spatial resolutions. The 

best combination of method and resolution yielded a DEM with minimal quantitative and 

qualitative error. The optimal spatial resolution for the DEM was 0.5 m. 



𝐴𝐸 = 𝑋𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 − 𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑…….…………………………………………………….........(1) 

𝑆𝐴𝐸 = ∑ 𝐴𝐸𝑛
𝑖=1 ………………………………………………………………………………… (2) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑋𝑖 − 𝑋|𝑛
𝑖=1 …………………………………………………………………...……. (3) 

Where, X=Elevation and n=Number of observations. 

Finally, the focal statistics tool was applied over the final DEM surface to remove interpolation 

artefacts, thereby rendering a smoother surface.  

Next, various surfaces were derived from the DEM. These surfaces include slope, aspect, 

curvature, wetness index, topographic exposure and land surface roughness. The land surface 

roughness were calculated by following Jenness (2004). All other topographic analyses and 

calculations were realised through either ArcMap (ESRI, 2012) or System for automated 

geoscientific analysis (SAGA) (Conrad et al., 2015).  

 

 

Figure 2. Example process and test to produce DEM 

 

 



Table 1. Comparison between two methods of interpolation at different resolutions. 

Resolution (m) Topo-raster Natural neighbour 

SAE MAE AE MAE 

0.1 55.038 0.195 38.168 0.138 

0.2 56.075 0.199 38.780 0.140 

0.3 55.140 0.196 39.026 0.142 

0.4 57.498 0.204 39.026 0.142 

0.5 55.721 0.198 40.366 0.146 

0.6 60.015 0.213 44.688 0.162 

0.7 58.796 0.208 43.728 0.158 

0.8 61.045 0.216 44.688 0.162 

 

Soil data 

Each of the four experimental sites were stratified by aspect and slope. A total of 45 soil pit 

locations were distributed throughout the aspect/slope strata. Soil pits were excavated with a small 

digger and soil samples were collected from each pit. The physical properties of soil samples and 

pits were described according to Gradwell (1972). In addition, soil profile depth, rooting depth, 

and soil permeability were measured for each pit. Moreover, a set of subsample from these pits 

were tested at Lincoln University soil physics lab to assess the moisture retention characteristics 

of the soil at different horizon depth, which further extended to calculate the root available water 

(RAW) (Allen et al., 1998).  

Besides this, top 10 cm of soil was sampled at each pit location for the chemical analysis. Chemical 

analysis includes Calcium (Ca), Magnesium (Mg), Sodium (Na), Potassium (K), Cation exchange 

capacity (CEC), PH, Total Carbon (C), Total Phosphate (P), Total Nitrogen (N), Potentially 

available Nitrogen (N), Carbon and Nitrogen ratio (C/N). The chemical analyses have been 

undertaken by Hill Laboratory following their standard procedures.   

Finally, soil moisture was recorded with HOBO soil moisture logging systems within each strata. 

Each of the loggers is equipped with three sensors installed at 20 cm soil depth and set at recording 

intervals of 30 minutes for data logging. 

 

 



Climatic data  

Climatic data for the study comes from a variety of sources. Independent meteorological stations 

were established in all four experimental sites. Each of the stations was equipped with radiation, 

temperature, and moisture loggers and wind and rain sensors. Moreover, the experimental trials 

were equipped with an additional 25 temperature sensors and 5 soil moisture loggers (3 sensors in 

each) to measure variation across all aspects and slopes. All the loggers including the 

meteorological stations were set to collect data at 30-minute intervals. In addition, we have access 

to virtual climatic station network (VCSN) data from the New Zealand National Institute of Water 

and Atmospheric Research (NIWA) for the study sites. This network estimates daily rainfall, 

potential evapotranspiration, air and vapor pressure, maximum and minimum air temperature, soil 

temperature, relative humidity, solar radiation, wind speed and soil moisture on a regular (~ 5 km) 

grid covering the whole of New Zealand. The estimates are produced every day, based on the 

spatial interpolation of actual data observations made at climate stations located around the country 

(NIWA, 2015b).  

Data from the weather stations and additional temperature loggers were collected and mean 

monthly maximum temperature were calculated for the total period (April, 2015-April, 2017) 

(Figure 3). The difference in temperature from the independently situated weather station to inside 

stand temperature logger will be modeled with a linear mixed effect modelling procedure by 

assigning fixed and random effect (Bates et al., 2014) and develop a temperature modifier.  



 

Figure 3. Mean monthly maximum temperature from the temperature loggers 

Data analysis 

Data preparation 

Cook’s distance, variance inflation factor (VIF) and graphical operations were undertaken to check 

for data normality and outliers. Trees noted as damaged or abnormal were left out from the 

modeling dataset. 

Height yield model 

Since Curtis (1972), stand-level and individual tree growth and yield models have been well 

explored (Clutter & Allison, 1974; Ek, 1974; Garcia, 1984; Monserud, 1984). But, unfortunately 

most growth models are developed for mature stands, which means the competition among trees 

is well defined (Zhang et al., 1996). Juvenile tree growth has not been modelled and reported in as 

much depth as modelling of mature trees (Avila, 1993; Mason & Whyte, 1997). Growth and yield 

models exploit the fact that starting stand dimensions indicate site quality, and modelling juvenile 



growth is more complex, because starting stand dimensions do not reflect site quality (Mason & 

Whyte, 1997; Zhang et al., 1996). However, juvenile stand yield has been found to have an 

exponential relationship with time (Eq 4). This is a widely used model for juvenile stands (Belli & 

Ek, 1988; Mason & Whyte, 1997). Moreover, as shown by Mason & Whyte (1997) the coefficients 

can be extended as a linear function (Eq 5 & 6) to include several independent variables and their 

interactions. Augmentation will be attempted in a later study.  The study described here examines 

the simple fits of the model described in Eq. 4 to overall data and also to individual plots. 

𝐻𝑇 = 𝐻0 + 𝛼𝑇𝛽………………………………………………………………………………… (4) 

𝛼 = 𝛼0 + 𝛼1𝑉1 +⋯+ 𝛼𝑛𝑉𝑛……………………………………………………………………. (5) 

𝛽 = 𝛽0 + 𝛽1𝑉1 +⋯+ 𝛽𝑛𝑉𝑛……………………………………………………………………. (6) 

Where, HT= Height at given age, H0=Initial height, T = Age, α & β =Coefficients and V1…Vn 

=Independent variables. 

  



Results 

Mensurational height yield model 

The mensurational model (Eq 4) was fitted for both E. globoidea and E. bosistoana species. The 

residual analysis of the E. globoidea model indicated that the error ranged from -1 to 2m and the 

histogram shows that the errors were slightly negatively skewed (Figure 4). In contrast, the E. 

bosistoana model had a similar range of errors, but was slightly positively skewed (Figure 5). At 

the plot level, the model prediction is better than the overall fit (Figure 4). It narrows down the 

residual range from -0.2 to 0.3m. Which indicates the improvement at plot level prediction. 

 

Figure 4. Residual plots from mensurational model of the E. globoidea (Overall & Plot level). 

Different colors indicate different plots.  



The mensurational models developed here only represent the mathematical relationship between 

tree height and time. In such a model, there is no potential for explaining the reasons that growth 

varied. This confirms the need to incorporate augmented modelling and physiological variables in 

models.  

 

Figure 5. Residual plots from mensurational model of the E. bosistoana (Overall) 

Further study 

The mensurational models don’t yield information about the underlying processes leading to 

variation in growth. However, it is evident that there are external factors which are playing a vital 

role in the growth of the trees at the early stages. It is necessary to identify and model those 

variables for precise prediction. For that, the coefficients are needed to extend linearly to find the 

significant factors and augment them to the final model to improve prediction and explain the 

variability.     
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