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Disclaimer 
 
This report has been prepared by Scion for Forest Growers Research Ltd (FGR) subject to the terms and 
conditions of a research services agreement dated 1 January 2016.  
 
The opinions and information provided in this report have been provided in good faith and on the basis that 
every endeavour has been made to be accurate and not misleading and to exercise reasonable care, skill 
and judgement in providing such opinions and information.  
 
Under the terms of the Services Agreement, Scion’s liability to FGR in relation to the services provided to 
produce this report is limited to the value of those services. Neither Scion nor any of its employees, 
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EXECUTIVE SUMMARY 

 
Two Douglas-fir progeny trials planted in Kaingaroa and Gowan Hill in 1996 were assessed in 

2007 and re-assessed in February 2017. Since this material contains genetically broad material 

coming from populations across Oregon and California, these two progeny trials were also 

selected as training populations in a genomic selection project for Douglas-fir.  

 

Since the bussines model connected to Douglas-fir marker array allows for genotyping of each 

individual for 75 USD, the strategy for genotyping was based on a partial genotyping effort equally 

distributed across all open-pollinated families (~2,200 individuals in total) and thus a single-step 

genetic evaluation approach combining phenotypic, pedigree and genomic data was implemented 

in this study.  

 

Implementation of genomic resources developed by Oregon State University in the evaluation of 
New Zealand Douglas-fir breeding populations in this study resulted in substantially improved 
prediction accuracy and response to selection compared with pedigree-based analysis. An 
additional increase in the response to selection was found when only ancestry informative markers 
were used in the analysis of traits with strong population differentiation (e.g. DBH). Thus, the 
currently available SNP array appears to be a useful genotyping platform for the New Zealand 
Douglas-fir breeding program. 
 
Implementation of the metafounders approach (i.e. inference of relatedness between pedigree 
founders of the provenance/progeny trial) resulted in increased prediction accuracy not only for 
genotyped but also for non-genotyped individuals. However, more complex modelling of population 
demography resulted in a reduction in model fit and lower prediction accuracy compared with a 
simple model with a single metafounder population. Therefore, reliable modelling of population 
structure in forest trees is challenging, even with the availability of abundant genetic marker data.  
The important finding from this study is that consideration of the distance of populations from 
native populations is important when building an implementation strategy for genomics.  
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INTRODUCTION 

Forest tree populations grow under a variety of environmental conditions, often along steep 
gradients of temperature and precipitation. Divergent selection has therefore resulted in predictable 
patterns of population genetic structure for putatively adaptive traits, particularly vegetative and 
flowering phenology, resulting in reproductive asynchrony (Levin, 1995). The efficient management 
of genetic resources under changing climates requires the capture of maximum genetic diversity 
across a species’ native distribution. Initial screening is usually performed through the 
establishment of provenance trials in common gardens, with samples collected across different 
populations with or without familial structure  (Matyas, 1996; Mátyás, 1994). In addition to providing 
descriptive information about genetic variation, the establishment of multiple common gardens 
across a variety of environments allows the construction of universal response functions, which 
can be used to match populations to environments (Wang et al, 2006; Wang et al, 2010), as well 
as to guide assisted migration to mitigate the effects of climate change (Aitken and Whitlock, 
2013). 

The integration of breeding programs into the management of genetic resources for future 
climates is critical for the maintenance of resilient genetic progress in adaptive as well as non-
adaptive but economically important attributes (Borralho and Dutkowski, 1998). Most forest tree 
breeding programmes are in an early phase of domestication due to the late onset of sexual 
maturity and delayed expression of economically important traits. Under such circumstances, 
evolutionary forces such as migration, random drift and natural selection can affect genetic 
parameters estimates obtained in the early generations of breeding cycles. Since mixed linear 
models (MLMs) are the preferred statistical tool in genetic evaluations, the fitting of provenance 
effects as a fixed or random term in MLMs was proposed as a viable solution for the capture of 
local genetic differences caused by these evolutionary forces (Ugarte et al, 1992). Alternatively, the 
delineation of contemporary genetic groups enables the estimation of relatedness between 
founders of documented pedigrees to correct for differences between genetically diverse groups of 
individuals (Westell et al, 1988).  

The development of genomic resources has impoved our understanding of the population 
genetic structure captured in breeding/conservation programmes. The tracking of coancestry 
(relatedness) between individuals in breeding populations improves the precision of genetic 
parameter estimates in three ways. First, realised relationship coefficients do not follow Mendelian 
expectations exactly due to random genome sampling errors. Second, individuals from different 
families are not necessarily unrelated (i.e. due to shared or related ancestros). Finally, pedigree 
records are not always accurate. 

Progeny tests often include up to tens of thousands of individuals, and genotyping the 
whole population can be costly. In such cases, a combination of pedigree and genetic marker 
information is recommended thorugh an approach called “single-step evaluation” (Legarra et al, 
2009; Misztal et al, 2009). The approach is based on blending a marker-based into a pedigree-
based relationship matrix, and the resulting combined relationship matrix is then used in MLMs to 
predict genomic breeding values. The blending of the two matrices consists of two critical steps: (1) 
rescaling the marker-based relationship matrix to the same scale as the pedigree-based 
relationship matrix and (2) weighting of the marker-based relationship matrix to reflect the fact that 
not all additive genetic variance is explained by markers, as well as to assure that the matrix is 
positive-definite (requirement for MLMs). However, this approach assumes that the base 
population of the pedigree is well defined, without any hidden relatedness or population structure. 
This assumption is problematic in the early generations of forest tree breeding cycles, and explicit 
modelling of the relatedness between pedigree founders can improve the prediction accuracy of 
single-step genetic evaluation. Consistent with this, modelling population structure increased the 
precision of breeding values in a previous analysis of a Douglas-fir provenance/progeny test 
(Klapste et al, 2019).  

Douglas-fir is the second most important conifer plantation species in New Zealand (i.e. 
after radiata pine), with a current planted area of ca. 104,000 ha. The economic feasibility of  
Douglas-fir plantations, however, depends crucially on genetic improvement, with productivity and 
stem defects being the two most important traits (Magalska and Howe, 2014), followed by 
resistance to Swiss Needle Cast (Dungey et al, 2012). Provenance tests performed on a broad 
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geographical scale in North America found that local populations grew best, with decreasing 
performance when the distance between the test site and population origin exceeded 435 km in 
latitude or 370 m in elevation (Terrance and Jayawickrama, 2014). However, this is not always the 
case, and in some instances, geographically distant provenances perform as well as the local one 
(Krakowski and Stoehr, 2009). 

 
Our study evaluated the efficiency of the exome capture based SNP array in New Zealand 
Douglas-fir population. The SNP array was developed based on transcriptome assembly covering 
around 25,000 unique gene models (Howe et al, 2013). In addition, we tested the effect of 
accounting for relatedness between pedigree founders on single-step evaluation.  
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METHODS 

 
 
Material 
The materials used to plant at two New Zealand environments (Kaingaroa, latitude 38° 17' S and 
Gowan Hill, latitude 45° 52' S) in 1996 were collected from populations in two US regions 
(California and Oregon), ranging in latitude from 36° to 48° N along the western coast of the USA. 
Each experiment included 30 replications of 7 sets, with each set containing 34 open-pollinated 
families and two controls. Provenances contributed equally to each set. A detailed description of 
the materials was provided in a previous study (Dungey et al, 2012). Trees were measured for 
diameter at breast height (DBH, measured in mm), acoustic wave velocity (time of flight between 
two probes placed on the tree around breast height, VEL, measured in km/s) as  asurrogate trait 
for wood density using the Hitman ST300 (Fibre-gen, Christchurch, New Zealand), straightness 
(STR, scored on a scale of 1 to 9, (Carson, 1986) and needle retention (NR) as screening for 
resistance to Swiss needle cast at the age of 21 years. Needle retention was measured only at 
Kaingaroa due to the favourable conditions for disease outbreak present at this site and scored on 
6-grade scale, reflecting the damage of needles of different ages. STR and NR (class variables) 
were Z-transformed into a normal score (Gianola and Norton, 1981). 

Genomic data were generated through the 58K Axium array developed using exome 
capture sequencing (Howe et al, 2013). Markers were filtered using the default filter developed by 
an external provider (Neogen, Nebraska US), but the threshold for call rate was set at 0.8 instead 
of the default value of 0.97. In addition, all markers were filtered for minor allele frequency (MAF) > 
0.01. Missing data were imputed as genotype means. In total, 25,170 SNPs were used in all 
downstream analyses for this scenario. Since the exome presumably represents the most 
evolutionary constrained part of the genomme, an ad hoc strategy was implemented for marker 
selection. Markers were first filtered for MAF > 0.1, and then each locus was checked for its 
informativeness to infer ancestry (Rosenberg et al, 2003) as follows: 

𝐼 =∑(−𝑝𝑗 log(𝑝𝑗) +∑
𝑝𝑖𝑗

𝐾
log(𝑝𝑖𝑗)

𝐾

𝑖=1

)

𝑁

𝑗=1

 

 
where N was the number of alleles (all SNPs were bi-allelic, so N = 2 in our case), pj was the 
frequency of the jth allele across all populations, K was the number of populations and pij was the 
frequency of the jth allele in the ith population. The top 15,000 markers were selected based on their 
I index for genomic selection and inference of relatedness between founders. 
 
Statistical analysis 
 
Recovery of hidden relatedness in the genotyped sample 
Because the population was established from open-pollinated seed collected in the wild stands, 
sib-ship reconstruction was performed to recover hidden familial structure in the sample of 
genotyped individuals using the COLONY program (Jones and Wang, 2010) using 500 randomly 
selected markers. Because conifers are investing a considerable amount of energy into 
reproductive outcome, polyandry and polygamy were assumed in our analysis. Furthermore, non-
negligible rates of selfing have been reported in several previous studies of Douglas-fir seed 
orhards (Slavov et al, 2005; Song et al, 2018). Therefore, the non-zero rates of inbreeding were 
assumed in these analyses. The prior for maternal family size was set as 10, reflecting the 
genotyping effort, and the prior paternal size was set at 3, assuming that fathers contribute to 
multiple offspring. The relationship matrix between genotyped individuals was initially constructed 
based on half-sib structure inferred from sib-ship reconstruction with a confidence of 0.9. This 
matrix was used for K-means clustering with the number of clusters (K) equal to the number of 
open-pollinated families. The analysis was performed by using “kmeans” function implemented in 
“stats” package in R programming environment (Team, 2018). Pedigree errors were identified and 
corrected based on on the results from this analysis. 

In addition, phantom parents (fathers) were added for individuals identified as full-sibs. 
These phantom fathers were assumed to be from the same provenance as mothers. The updated 
pedigree information, along with contemporary genetic groups included in the pedigree, was used 
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in the pedigree-based analysis to obtain genetic parameters and estimated breeding values (EBV). 
A MLM implemented in the statistical package “ASReml-R” (Butler et al, 2009) was used to 
analyse phenotypic data as follows: 
 

𝒚 = 𝑿𝜷 + 𝒁𝒈 + 𝒁𝒓 + 𝒁𝒓𝒔 + 𝒆 
 
where y was the vector of measurements, β was the vector of fixed effects containing the overall 

mean, g was the vector of additive genetic effects following 𝑣𝑎𝑟(𝒈)~𝑁(0,𝑨𝜎𝑔
2), where A was the 

average of the numerator relationship matrix (Wright, 1922) and 𝜎𝑔
2 was the additive genetic 

variance. The design effects were represented by a vector of random replication effects following 

𝑣𝑎𝑟(𝒓)~𝑁(0, 𝑰𝜎𝑟
2), where I was the identity matrix and 𝜎𝑟

2 was the replication variance, and by the 

vector of sets nested within replications following 𝑣𝑎𝑟(𝑟𝑠)~𝑁(0, 𝑰𝜎𝑟𝑠
2 ), where 𝜎𝑟𝑠

2  was the set nested 
within replication variance. Similarly, e was the vector of random residuals following 

𝑣𝑎𝑟(𝒆)~𝑁(0, 𝑰𝜎𝑒
2), where 𝜎𝑒

2 was the residual variance. The narrow-sense heritability was 
estimated as follows: 
 

ℎ2 =
𝜎𝑔
2

𝜎𝑔
2 + 𝜎𝑒

2 

 
and the theoretical accuracy of breeding values was estimates as: 
 

𝑟 = √1 −
𝑃𝐸𝑉

𝜎𝑔
2  

 
where PEV was the prediction error variance (Mrode, 2014) estimated as the square of standard 
errors for breeding value estimates. 
 
Relatedness between metafounders 
Three scenarios of relatedness between metafounders were investigated through the 
implementation of a generalized least squares (GLS) method (Garcia-Baccino et al, 2017). 

The first scenario considered a single population represented by the coefficient of 
relatedness γ in metafounders that was estimated as follows: 
 

𝛾 = 2𝜎𝜇
2 

 

where 𝜎𝜇
2 was the variance in genotype mean estimates across all loci. The genotype mean was 

estimated separately for each locus as follows: 
 

�̂� = (1′𝑨22
−11)−11′𝑨22

−1𝑚𝑖 
 

where 𝑨22 was the pedigree-based relationship matrix for genotyped individuals (derived from sib-
ship reconstruction) and mi was the vector of genotypes for teh ith locus in terms of allele dosage 
(0, 1 and 2).  

The second scenario assumed multiple populations with no crosses between populations. 
This scenario used a matrix Γ, representing ancestral relationships between pedigree founders, 
which was estimated as follows: 
 

𝚪 = 2 [

𝜎
𝜇[1]𝜇[1]
2 ⋯ 𝜎𝜇[1]𝜇[𝑛]

⋮ ⋱ ⋮
𝜎𝜇[𝑛]𝜇[1] ⋯ 𝜎

𝜇[𝑛]𝜇[𝑛]
2

] 
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where 𝜎
𝜇[1]𝜇[1]
2  and 𝜎

𝜇[𝑛]𝜇[𝑛]
2  were the variances of genotype mean estimates in the 1st and nth 

population, 𝜎𝜇[1]𝜇[𝑛] and 𝜎𝜇[𝑛]𝜇[1] were the covariances between genotype mean estimates from the 

1st and nth populations. 
Genotype means were estimated as: 
 

�̂�[𝑏] = (1′𝑨22
[𝑏]−1

1)−11′𝑨22
[𝑏]−1

𝒎𝑖
[𝑏]

 

 

where 𝑨22
[𝑏]

 was the pedigree-based relationship matrix for genotyped individuals coming from the 

bth population and 𝒎𝑖
[𝑏]

 was the vector of genotypes for the ith locus for individuals coming from the 

bth population. 
The third scenario assumed multiple populations with crosses between populations. In this 

case, genotype means were estimated simultaneously for all populations as follows: 
 

�̂� = (𝑸′𝑨22
−1𝑸)−1𝑸′𝑨22

−1𝒎𝒊 
 
where Q represented the matrix of ancestry fractions coming from each population for each 
genotyped individual, with columns representing ancestral populations and rows representing each 
individual. The sum of each row was equal to 1. The Q matrix was constructed by assigning a 
coefficient of 0.8 to the maternal population (i.e. ancestral population of mother) of each individual 
and 0.1 to the two closest provenances to the North and South of the maternal population. In the 
case of marginal provenances, a coefficient 0.2 was assigned to the closest provenance. This 
strategy was adopted based on previous results, indicating that assuming a mixture of ancestral 
populations resulted in better model fit (Klapste et al, 2019). However, when sib-ship 
reconstruction suggested that the father of a particular individual was coming from the same 
provenance as the mother, the Q matrix was assigned a coefficient of 1 for the parental 
provenance and 0 for all other populations. 
   
Implementation of relatedness between metafounders in the pedigree-based relationship 
matrix 
The documented pedigree-based relationship matrix was modified to infer relatedness between 
metafounders. For the single-population scenario, the pedigree-based relationship matrix was 
modified as follows: 
 

𝑨𝛾 = 𝑨(1 −
𝛾

2
) + 𝛾𝑱 

where A was the documented pedigree-based relationship matrix, γ was the relatedness between 
pedigree founders, and J was a matrix of 1's. For pedigree founders from multiple populations, the 
documented-pedigree based relationship matrix was modified as follows: 
 

𝑨Γ ≈ 𝑨(𝑰 − 0.5𝑑𝑖𝑎𝑔(𝑸𝚪𝑸′)) + 𝑸𝚪𝑸′ 

 
This step was performed using software developed by Legarra et al. (Legarra et al, 2015), 
available at: https://github.com/alegarra/metafounders. 
 
Single-step genetic evaluation 
Phenotypic values were corrected for design effects to reduce the computational burden 
associated with the implementation of Bayesian approaches using a MLM implemented in the 
"ASReml-R" package (Butler et al, 2009) as follows: 
 

𝒚 = 𝑿𝜷 + 𝒆 
  
where y was a vector of phenotypes, β was the vector of fixed effects including overall mean, 
replication and set nested within replication and e was the vector of residual effects with 

𝑣𝑎𝑟(𝒆)~𝑁(0, 𝑰𝜎𝑒
2), where 𝜎𝑒

2 was the residual variance, and X was the index matrix associating 
effects from vector β to phenotypes in vector y. 
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The single-step genetic evaluation was performed using a MLM based on a Gibbs sampling 
algorithm implemented in the "BGLR" R package (Pérez and de Los Campos, 2014) as follows: 

𝒚 = 𝑿𝜷 + 𝒁𝒈 + 𝒆 
  
where y was a vector of phenotypes, β was the vector of fixed effects including overall mean, g 

was a vector of genomic estimated breeding values following 𝑣𝑎𝑟(𝒈)~𝑀𝑉𝑁(0,𝑯𝜎𝑔
2), where 𝜎𝑔

2 was 

the additive genetic variance associated with relatedness inferred from the combination of pedigree 

and genomic information following the default setting ~𝜒−2(𝑑𝑓 = 5, 𝑆 = 𝑣𝑎𝑟(𝑦) ∗ 0.5), and H was 
the combined relationship matrix. H was constructed using the pedigree-based relationship matrix 
modified for relatedness between pedigree founders either considering only one population Aγ or 
multiple populations defined by provenances AΓ and the marker-based relationship matrix on the 
original scale (no rescaling step has been implemented) as follows:   
 

𝑯Γ = [
𝑨11
Γ + 𝑨12

Γ 𝑨22
Γ−1(𝑮 − 𝑨22

Γ−1)𝑨22
Γ−1𝑨21

Γ 𝑨12
Γ 𝑨22

Γ−1𝑮

𝑮𝑨22
Γ−1𝑨21

Γ 𝑮
] 

 

where 𝑨11
Γ  was the pedigree-based relationship matrix for non-genotyped individuals, 𝑨22

Γ  was the 

pedigree-based matrix for genotyped individuals, 𝑨12
Γ  and 𝑨21

Γ  were the pedigree-based matrices 
between genotyped and non-genotyped individuals, and G was the marker-based relationship 
matrix. The marker-based relationship matrix was estimated following (VanRaden, 2008): 
 
 

𝑮 =
𝒁𝒁′

2∑ 𝑝𝑗(1 − 𝑝𝑗)𝑗
 

 
where Z = M – P. M was the genotype matrix coding reference allele homozygote as 0, 
heterozygote as 1 and alternative allele homozygote as 2 and P was double the frequency for the 
alternative allele. 

Independent evaluation of the prediction model was performed through jackknifing with 
fixed variance components following the approach proposed by (Gianola and Schön, 2016). 
Predictive ability was estimated as the correlation between predicted genomic breeding values 
(GEBV) and corrected phenotypes cor(GEBV, y). Prediction accuracy was estimated in two ways: 
CV1 was the correlation between GEBV and pedigree-based breeding values cor(GEBV, EBV); 
and CV2 was the predictive ability divided by the square root of heritability: 
 

𝑟𝑝 =
𝑐𝑜𝑟(𝐺𝐸𝐵𝑉, 𝑦)

√ℎ2
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RESULTS 

From a total of 58,350 markers, 24,010 (41%) had high quality and included all genotype classes 
(reference homozygote, heterozygote, alternative homozygote), while only 2.6% had high quality 
but were monomorphic (Table 1). Around 20% of markers showed only two genotype classes,  
without minor allele homozygotes. In total, 35,584 markers passed initial filtering 
(PolyHighResolution + MonoHighResolution + NoMinorHom), and 25,171 markers remained after 
filtering for minor allele frequency (>0.01). The “OTV” confersion type is group of markers which 
are usually highly reproducible but interfere with the SNPs of interest. The “other” represent 
markers which do not fit any of other categories and usually suffer from low call rates. 
 
Finally, markers were assessed for their informativeness in inferring ancestry, and the top 15,000 
markers based on I index were selected for testing in one of our alternative scenarios (AIM).  
 
 

Conversion type Count Percentage 

PolyHighResolution 24010 41.15 

Other 16554 28.37 

MonoHighResolution 1536 2.63 

NoMinorHom 11182 19.16 

CallRateBelowThershold 16 0.03 

OTV 5052 8.66 

Table 1: Performance of 58K Axium array on the New Zealand population  
 
 
Based on principal component analysis of marker-based relationship matrices, the scenario using 
only ancestry informative markers had a slightly higher proportion of total variance explained by 
first and second principal (Figure 1).   
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Figure 1: First and second principal components (upper row) as well as third and fourth principal 
component (bottom row) from spectral decomposition of marker-based relationship matrices using 
all markers (left side) and only ancestry informative markers (right side). 
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 Gowan Hill Kaingaroa 

Model DBH STR VEL DBH STR NR VEL 

Add.gen.var 842 (134) 0.13 (0.02) 0.04 (0.01) 949 (194) 0.11 (0.03) 0.05 (0.02) 0.03 (0.01) 

Rep var 81.4 (26.5) 0.01 (0.00) 0.04 (0.01) 80.9 (31.3) 0.11 (0.03) 0.25 (0.07) 0.02 (0.01) 

Rep(set) var 11.6 (14.2) 0.00 (0.00) 0.00 (0.00) 20.7 (27.7) 0.01 (0.01) 0.02 (0.01) 0.01 (0.01) 

Resid var 2546 (90.9) 0.21 (0.01) 0.08 (0.00) 2751 (136) 0.41 (0.02) 0.30 (0.01) 0.11 (0.01) 

h2 0.25 (0.04) 0.40 (0.04) 0.33 (0.04) 0.26 (0.05) 0.21 (0.05) 0.15 (0.04) 0.22 (0.04) 

r 0.67 0.72 0.66 0.63 0.43 0.42 0.54 

logL -24744 580 2770 -13475 -481 -25.2 1368 

Table 2: Variance components, heritability (standard errors in parenthesis), accuracy of breeding 
value estimates and log-likelihoods from models using an updated pedigree based on results from 
sibship reconstruction. 
 
Genetic evaluation using the updated pedigree information (i.e. based on sibship reconstruction) 
resulted in statistically significant additive genetic variances and heritability estimates for all traits. 
Heritability ranged from 0.15 for needle retention to 0.40 for straightness at Gowan Hill. Similarly, 
the accuracy of breeding values ranged from 0.42 for needle retention to 0.72 for straightness at 
Gowan Hill (Table 2).  
 

  Gowan Hill Kaingaroa 

Model Pop DBH STR VEL DBH STR NR VEL 

  NG NA NA NA NA NA NA NA 

ABLUP G NA NA NA NA NA NA NA 

 T 0.30 (0.73,0.60) 0.19 (0.39,0.30) 0.23 (0.58,0.40) 0.34 (0.78,0.67) 0.13 (0.54,0.28) 0.16 (0.77,0.41) 0.15 (0.52,0.32) 

 DIC 59868.8 9195.7 4062.2 32596.8 6366.5 5885.1 2913 

 NG 0.37 (0.84,0.74) 0.35 (0.68,0.55) 0.32 (0.76,0.56) 0.41 (0.85,0.80) 0.21 (0.69,0.46) 0.20 (0.73,0.52) 0.28 (0.74,0.60) 

HBLUP1 G 0.42 (0.69,0.84) 0.42 (0.62,0.66) 0.38 (0.65,0.66) 0.39 (0.66,0.77) 0.27 (0.46,0.59) 0.18 (0.41,0.47) 0.27 (0.53,0.58) 

 T 0.38 (0.80,0.76) 0.37 (0.67,0.59) 0.34 (0.72,0.59) 0.41 (0.77,0.80) 0.23 (0.59,0.50) 0.19 (0.59,0.49) 0.28 (0.65,0.60) 

 DIC 56269.9  8583.4 3802.6 32503.3 6315.6 5860.7 2812.7 

 NG 0.36 (0.85,0.72) 0.36 (0.68,0.57) 0.32 (0.76,0.56) 0.41 (0.87,0.80) 0.20 (0.73,0.44) 0.19 (0.83,0.49) 0.28 (0.78,0.60) 

HBLUP2 G 0.41 (0.79,0.82) 0.40 (0.63,0.63) 0.38 (0.72,0.66) 0.40 (0.78,0.78) 0.29 (0.58,0.63) 0.20 (0.68,0.52) 0.26 (0.61,0.55) 

 T 0.37 (0.84,0.74) 0.37 (0.67,0.59) 0.33 (0.75,0.58) 0.41 (0.84,0.80) 0.24 (0.67,0.52) 0.19 (0.77,0.49) 0.27 (0.71,0.58) 

 DIC 56968.8  8607.6 3865.4 32500.7 6323.7 5869.6 2809.7 

 NG 0.36 (0.86,0.72) 0.35(0.69,0.55) 0.31 (0.76,0.54) 0.41 (0.88,0.80) 0.19 (0.74,0.42) 0.20 (0.85,0.52) 0.28 (0.78,0.72) 

HBLUP3 G 0.41 (0.80,0.82) 0.40 (0.63,0.63) 0.37 (0.72,0.64) 0.40 (0.80,0.79) 0.29 (0.60,0.63) 0.21 (0.71,0.54) 0.27 (0.62,0.58) 

 T 0.37 (0.84,0.74) 0.36 (0.67,0.57) 0.33 (0.75,0.58) 0.41 (0.85,0.80) 0.23 (0.68,0.50) 0.21 (0.79,0.54) 0.28 (0.72,0.60) 

  DIC 57196  8643.9 3873.9 32502.4 6326.4 5869.4 2814.7 

Table 3: Predictive ability and accuracy (in parenthesis: CV1 - left, CV2 - right) for non-genotyped 
individuals (NG), genotyped individuals (G) and across all individuals (T) for all phenotypic traits. 
Model fit was assessed through the Deviation Information Criterion (DIC) for the scenario using all 
genetic markers.  
 
 
Across all investigated traits, the Deviation Information Criterion (DIC) indicated a large 
improvement in model fit when single-step evaluation was implemented compared with pedigree-
based analysis. Further improvement in model fit was achieved when only ancestry informative 
markers were used for the inference of relatedness between pedigree founders, as well as for the 
construction of the marker-based relationship matrix between all genotyped individuals.  

Surprisingly, the best model fit was observed in a scenario using only single metafounder 
population (HBLUP1) compared to scenarios using multiple populations with or without gene flow 
(HBLUP2 and HBLUP3) (Table 3 and 4). Therefore, a simple estimation of relatedness and 
population structure between pedigree founders performed better than scenarios based on specific 
assumptions about the complexity and dynamics of gene flow among provenances. A deeper 
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understanding of population structure and gene flow may be required to take advantage of 
modelling more complex metafounder scenarios. 

Predictive ability followed a similar pattern, improving greatly for both genotyped and non-
genotyped individuals in single-step evaluation compared with pedigree-based analyses. As 
expected, additional improvements in predictive ability were observed for genotyped individuals, as 
genetic markers capture relatedness much better than the rather shallow pedigree information 
available at the current stage of the breeding programme.  Surprisingly, there was a decrease in 
predictive ability in genotyped individuals at Kaingaroa when all markers were used compared with 
the scenario using the only ancestry informative markers (AIM) (Table 3 and 4). Thus, a screen for 
marker informativeness seems to be a sensible way to increase the efficiency of single-step 
genetic evaluation.  

Estimates of prediction accuracy were highly influenced by the method used (CV1 versus 
CV2). Following the CV1 method, the correlation between predicted genomic breeding values 
(GEBV) and pedigree-based estimated breeding values (EBV) was lower for genotyped compared 
with non-genotyped individuals. However, the simple rescaling of predictive ability by the square 
root of heritability reversed this trend. This could be an artefact driven by the quality of EBV 
estimates. The shallow pedigree records provide very limited information about related individuals, 
which ultimately leads to shrinking breeding values toward the family mean. Thus, while genetic 
markers can to some extent track Mendelian segregation, pedigree-based predictions are able to 
only predict family means, which results in higher correlations between GEBV and EBV for non-
genotyped individuals in a single-step evaluation. Therefore, the Mendelian segregation captured 
by genetic markers is reflected only in predictive ability in this case, which appears to not be 
affected by the limitations of breeding values estimated in a population with shallow pedigree 
information. Prediction accuracy estimates based on CV1 appeared to be more inflated for the 
traits with lowest heritabilities (NR) and less so for traits with higher heritabilities (STR).  

The expected response to selection was generally higher using single-step evaluation 
compared with the pedigree-based analysis (Figure 2). A further increase in the response to 
selection was archived when only markers that were informative for ancestry were used in the 
single-step evaluation (Figure 3), especially for traits with stronger phenotypic differences between 
provenances (e.g. DBH).  
 
 
 

  Gowan Hill Kaingaroa 

Model Pop DBH STR VEL DBH STR NR VEL 

  NG NA NA NA NA NA NA NA 

ABLUP G NA NA NA NA NA NA NA 

 T 0.30 (0.73,0.60) 0.19 (0.39,0.30) 0.23 (0.58,0.40) 0.34 (0.78,0.67) 0.13 (0.54,0.28) 0.16 (0.77,0.41) 0.15 (0.52,0.32) 

 DIC 59868.8 9195.7 4062.2 32596.8 6366.5 5885.1 2913.6 

 NG 0.37 (0.84,0.74) 0.37 (0.69,0.59) 0.32 (0.76,0.56) 0.40 (0.85,0.79) 0.19 (0.68,0.42) 0.20 (0.73,0.52) 0.28 (0.75,0.60) 

HBLUP1 G 0.43 (0.72,0.86) 0.42 (0.63,0.66) 0.40 (0.68,0.70) 0.43 (0.70,0.84) 0.29 (0.51,0.63) 0.20 (0.45,0.52) 0.29 (0.57,0.62) 

 T 0.38 (0.81,0.76) 0.38 (0.66,0.60) 0.34 (0.74,0.59) 0.42 (0.79,0.82) 0.23 (0.61,0.50) 0.20 (0.61,0.52) 0.29 (0.68,0.62) 

 DIC 55811.3 8513.0 3786.9 32474.6 6297.6 5858.0 2797.6 

 NG 0.36 (0.86,0.72) 0.36 (0.69,0.57) 0.31 (0.76,0.54) 0.41 (0.88,0.80) 0.21 (0.74,0.46) 0.20 (0.84,0.52) 0.28 (0.78,0.60) 

HBLUP2 G 0.41 (0.80,0.82) 0.42 (0.65,0.66) 0.38 (0.73,0.66) 0.42 (0.80,0.82) 0.32 (0.62,0.70) 0.22 (0.71,0.57) 0.28 (0.64,0.60) 

 T 0.37 (0.84,0.74) 0.37 (0.68,0.59) 0.33 (0.75,0.58) 0.42 (0.85,0.82) 0.25 (0.69,0.55) 0.21 (0.79,0.54) 0.28 (0.72,0.60) 

 DIC 56733.1 8572.5 3849.4 32472.0 6305.7 5866.9 2795.6 

 NG 0.35 (0.85,0.70) 0.36 (0.69,0.57) 0.31 (0.76,0.54) 0.41 (0.88,0.80) 0.20 (0.74,0.44) 0.20 (0.84,0.52) 0.29 (0.78,0.62) 

HBLUP3 G 0.41 (0.80,0.82) 0.41 (0.65,0.65) 0.38 (0.73,0.66) 0.42 (0.81,0.82) 0.32 (0.63,0.70) 0.22 (0.72,0.57) 0.28 (0.64,0.60) 

 T 0.36 (0.84,0.72) 0.37 (0.68,0.59) 0.33 (0.75,0.58) 0.42 (0.85,0.82) 0.25 (0.70,0.55) 0.21 (0.80,0.54) 0.28 (0.73,0.60) 

  DIC 56733.1 8573 3857.9 32473.7 6308.4 5866.7 2800.6 

Table 4: Predictive ability and accuracy (in parenthesis: CV1 - left, CV2 - right) for non-genotyped 
individuals (NG), genotyped individuals (G) and across all individuals (T) for all phenotypic traits. 
Model fit was assessed through the Deviation Information Criterion (DIC) for the scenario using 
only ancestry informative markers (AIM). See comments in previous table 
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Figure 2: Genetic gain (i.e. average breeding values) achieved in each tested scenario for DBH 
using all markers (upper left) and ancestry informative markers only (upper right), as well as for 
acoustic velocity using all markers (bottom left) and ancestry informative markers only (bottom 
right) at the Gowan Hill site. 
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Figure 3: Genetic gain ( i.e. average breeding values) achieved in each tested scenario for DBH 
using all markers (upper left) and ancestry informative markers only (upper right), as well as for 
acoustic velocity using all markers (bottom left) and ancestry informative markers only (bottom 
right) at the Kaingaroa site. 
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CONCLUSION 

 
Implementation of genomic resources developed by Oregon State University in the evaluation of 
New Zealand Douglas-fir breeding populations resulted in substantially improved prediction 
accuracy and response to selection compared to pedigree-based analysis. An additional increase 
in the response to selection was found when only ancestry informative markers were used in the 
analysis of traits with strong population differentiation (e.g. DBH; Figures 2 and 3). Thus, the 
currently available SNP array appears to be a useful genotyping platform for the New Zealand 
Douglas-fir breeding program. 
 
Implementation of the metafounders approach (i.e. inference of relatedness between pedigree 
founders) resulted in increased prediction accuracy not only for genotyped but also for non-
genotyped individuals. This was not the case when relatedness between pedigree founders was 
ignored. However, more complex modelling of population demography resulted in worse model fit 
and lower prediction accuracy compared to a parsimonious model with a single metafounder 
population (Tables 3 and 4). Therefore, reliable modelling of population structure in forest trees is 
challenging, even with the availability of abundant genetic marker data.   
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