
 

  Leadership in forest and environmental management, innovation and research 

 

National forest owner survey and resource 
inventory of alternative species 

 
Stage 3: Mapping alternative species in East Coast 

 
Authors: Vega Xu and Bruce Manley 

 

 
 

Research Providers: University of Canterbury  
 
 
 
Publication No:  SWP-T159 
 
Date: Dec 2022



   

 

Executive Summary 

This study used a remote sensing approach to classify alternative species of small-scale 
plantations in the East Coast wood supply region (i.e. Gisborne District). With additional truthing 
data, the approach achieved 92.9% overall classification accuracy. Douglas-fir and Eucalyptus 
were the two most accurately classified alternative species categories, with producer’s accuracies 
of 97.2 and 94.0% respectively. The most important input variable selected for the classification 
was DEM (Digital Elevation Model), suggesting that elevation plays an important role in 
differentiating plantation species.  
 
When applying the classification to the East Coast region, overall 4,582 ha of small-scale 
alternative species were mapped and the most common alternative species categories are 
Douglas-fir and Eucalyptus, accounting for 35% and 30% of the total small-scale alternative 
species resources. Acacia and poplar are the least common alternative species identified, with 72 
ha and 59 ha estimated respectively. When aggregated with the area provided by the large-scale 
owners, in total 5,353 ha of alternative species were estimated in the East Coast region. This is 
780 ha (17%) more than the NEFD-reported area. The area of cypress, other softwoods and 
hardwoods are similar to the NEFD area. However, Douglas-fir was 245 ha (12%) less than the 
NEFD area and the estimated Eucalyptus area was three times more than the NEFD area. Overall, 
it appears that NEFD underestimates the total area of small-scale alternative species. 
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Project Introduction 

 
The Stage 1 objective of this project was to identify a suitable methodology for a NZ-wide survey 
and inventory of alternative species forests and their owners by undertaking a pilot study in 
Hawke’s Bay Region. This objective was achieved, by mapping the alternative species resource 
down to 0.1 ha in the Hawke’s Bay Region, and identifying a significant proportion of the forest 
owners via the application of the LINZ cadastral layer. The work confirmed that there are significant 
differences between National Exotic Forest Description (NEFD) data for alternative species in 
Hawke’s Bay and the actual forest resource on the ground. Whereas the NEFD estimated 3190 ha 
of alternative species, the study found 3794 ha of area above the 1 ha minimum applied in the 
NEFD. 
 
Stage 2a objectives were to validate and extend the small-scale owners’ data gathered in Stage 1 
and generate information about the Hawke’s Bay alternative species resource. A survey on small-
scale alternative species was delivered to small-scale owners identified from Stage 1, however, the 
response rate was very poor and the survey did not provide much information on the alternative 
species resource.  
 
The objective of Stage 2b was to develop an automated mapping approach to classify alternative 
species based on input data received from corporate owners. The mapping approach achieved an 
overall classification accuracy of 92.8%. Douglas-fir and Eucalyptus were the two most accurately 
classified alternative species categories, with producer’s accuracy of over 90%. The most 
important input variable selected for the classification was DEM (Digital Elevation Model), 
suggesting that elevation plays an important role in differentiating plantation species. It was found 
that the accuracy of species classification highly depends on the availability of truthing data. 
 
Stage 3 objective: the classification method developed in stage 2b on the Hawke’s Bay resources 
will be applied to the East Coast region. Additional truthing data with known locations and species 
will be collected from PSPs and NZDFI trials, and then be used in the classification of alternative 
species in the East Coast region.  
 

Stage 3: Introduction 

The key objective of stage 3 was to develop a map of alternative species in the East Coast wood 
supply region (i.e. Gisborne District). Random Forest (RF) classifier will continue to be applied 
using 10 m resolution Sentinel imagery due to its robust performance proved in stage 2b. Truthing 
data with known locations and species are required to perform species classification, and the data 
should be representative and cover a wide range of age classes and site conditions. Large-scale 
forest owners generally have this data in digital format for management purposes, whereas 
smaller-scale owners rarely have such good digital records. In stage 2b, the large-scale owners for 
East Coast provided spatial data for 771 ha of alternative species, mainly consisting of eucalyptus, 
Douglas-fir and pine (non-radiata) species (Table 1). This data was used as truthing data for stage 
3. However, in stage 2b, it was found that the classification results highly depended on the amount 
of truthing data. Therefore, we expanded the truthing data by incorporating PSP data for alternative 
species for the stage 3 mapping. 
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Table 1: Area of alternative species provided by large-scale owners in East Coast. 

Species  Area (ha) 

Acacia 26 

Cypress 90 

Douglas-fir 138 

Eucalyptus 196 

Larch 30 

Native 3 

Other exotics 63 

Other mixed  5 

Pine 153 

Redwood 67 

Total 771 

 

The 2021 National Exotic Forest Description (NEFD) reported 4,573 ha of alternative species in the 
East Coast wood supply region. According to our experience with this project, NEFD may not be 
accurate and the numbers do not provide the spatial location of the alternative species. 

 

Table 2: Area of alternative species in East Coast wood supply region as reported in 2021 NEFD.  

Alternative species  NEFD Area (ha) 

Douglas-fir 1,987 

Cypress species 282 

Other softwoods 887 

Eucalypt 492 

Other hardwoods 925 

Total  4,573 

 

This project aims to map the alternative species within the East Coast wood supply region with RF 
classifier and additional truthing data. Specifically, the project involved three components: pre-
defining the alternative species boundaries manually with aerial photos, collecting additional 
truthing data and preform species classification. The mapped area was consequently be compared 
with the NEFD area.  

 

Methods 

Pre-defining forest boundary  

Pre-defining the geographic boundaries of alternative species is required to define the extent of 
classification. Without the pre-defined boundaries, the classification approach tends to map other 
land covers as alternative species plantations due to a similar spectral signature. An operator was 
trained to manually delineate the boundary of alternative species that are sized over 0.5 ha in East 
Coast using 0.3 m aerial photos downloaded from LINZ.  

 

Collecting additional truthing data 

As discovered from stage 2b, the truthing data for East Coast only covers 771 ha of alternative 
species, the truthing data in Central North Island (CNI) and Hawke’s Bay were also used as 
additional truthing data.  
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In addition, PSP data including the coordinates of the plot, plot size, species and establishment 
year were acquired from Scion. In total 847 plots were received including Douglas-fir, cypress, 
Eucalyptus, acacia and redwood, which covers the whole country. There were 26 plots for East 
Coast (redwood, eucalyptus and cypress). NZDFI also provided the GIS boundaries of their trials 
which include detailed Eucalyptus species and establishment year information.  
 
Within the provided GIS boundaries provided, circular plots with a maximum of 50 m radius were 
automatically and randomly generated which were then used as the sample data for species 
classification in order to reduce classification time. The data was then randomly split into 70% 
training and 30% validation dataset. A summary of the size of truthing data for each target 
classification class is described in Table 3. 
 
Table 3: Description of training and validation data for each species class. Each pixel represents a 10x10 m grid. Other 
species include other alternative species that are not listed in the table such as cedar and willow. Radiata pine samples 
were manually added as place holders in the classification. Other pines are pine species other than radiata pine. 

Species Training  Validation Total  

Acacia 2,281 977 3,258 

Cypress 10,384 4,449 14,833 

Douglas-fir 41,850 17,935 59,785 

Eucalyptus 17,049 7,306 24,355 

Larch 2,229 954 3,183 

Other pine 6,135 2,628 8,763 

Other species 7,902 3,386 11,288 

Poplar 1,592 681 2,273 

Radiata 27,622 11,837 39,459 

Redwood 5,606 2,402 8,008 

Total  122,650 52,555 175,205 

 
 

Remote sensing data 

The national Sentinel-2 mosaic was processed by Manaaki Whenua - Landcare Research based 
on workflow developed by Shepherd, et al. (2020) and distributed by the Ministry for the 
Environment (MfE), New Zealand. The image product is a 10 m, a ten-band multispectral, cloud-
minimised mosaic of multiple Sentinel-2A and -2B satellite images over New Zealand and was 
acquired from late 2021 to early 2022 (Table 4). The mosaic went through pan-sharpening, 
atmospheric and bidirectional reflectance distribution function correction, cloud clearing and 
minimising process. 
 
Table 4: Bands included in Sentinel-2 image mosaic 

Band Band Name Short Name Wavelength (nm) 

2 Blue B 490 

3 Green  G 560 

4 Red R 665 

5 Red Edge 1 RE705 705 

6 Red Edge 2 RE740 740 

7 Red Edge 3 RE783 783 

8 Near Infrared wide NIR842 842 

8A Near Infrared narrow NIR865 865 

11 Short Wave Infrared 1  SWIR1610 1610 
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12 Short Wave Infrared 2 SWIR2190 2190 

 
 
Vegetation indices (VIs), which are the spectral transformation of two or more spectral bands, are 
useful in detecting variations in spectral response to foliage colour and have considerable 
advantages in cellular structure evaluation, stress prediction, moisture content estimate, pigment 
content detection, and stress estimation (Immitzer et al., 2019). In total, 33 vegetation indices, which 
are sensitive to vegetation properties and have been previously used in vegetation classification 
studies (Grabska et al., 2019; Immitzer et al., 2019; Ye et al., 2021), were extracted from the 
Sentinel-2 mosaic (Appendix 1).  
 
Textural features are mainly related to the variability of stand density, forest type (broadleaved, 
coniferous), crown size, crown closure, crown form, and crown closure (Fassnacht et al., 2016). They 
can considerably enhance the classification accuracy when combined with spectral features (Mallinis 
et al., 2008). For this study, after performing Principle Component Analysis (PCA) on the Sentinel-2 
mosaic, a 3 by 3 window size was used to calculate the values of the Grey Levels Co-Occurrence 
Matrix (GLCM) (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and 
correlation). To minimise computation and data, the first principle band was chosen for the GLCM; 
the majority of the data variance could be kept by performing PCA on the original image. 
 
Phenological features were derived from analysing the temporal variation of Enhanced Vegetation 
Index-2 (EVI2) using Sentinel-2 data collected from 1 January 2019 to 31 December 2020 in Google 
Earth Engine (GEE). EVI2 was chosen because it is one of the most commonly used VIs for 
phenological studies, as reviewed by Caparros-Santiago et al. (2021). It was developed by Jiang et 
al. (2008) to address the saturation issue of the Normalized Difference Vegetation Index (NDVI) in 
areas with high biomass and to avoid using the blue band, which lacks vegetation characteristic 
information in the calculation (Wang et al., 2018). Three seasonal metrics, amplitude (AMP), phase 
(PH) and mean EVI2 of the period, were extracted. Phase measures the length of the change’s time 
window, whereas amplitude shows the size of the shift relative to a baseline. 
 
In addition, a Digital Elevation Model (DEM) was retrieved from Land Information New Zealand (Land 
Information New Zealand (LINZ), 2020) and was resampled to 10 m to be consistent with the rest of 
the input features. In total, 55 features were extracted using remote sensing software ENVI version 
5.6 (ENVI, 2021). 
 

Species classification  

Random forest is a machine learning algorithm applied widely in image classification because of its 
high prediction accuracy and the ability to handle high-dimensional data. The classifier is an 
ensemble of independent individual decision trees, each individual decision tree in the classifier 
casts a vote for the class that should be applied to the given sample, and the class that receives the 
most votes wins (Breiman, 2001). The algorithm does not require distributional assumption and is 
less sensitive to the number of input variables and overfitting (Fassnacht et al., 2016). Pelletier et al. 
(2016) compared classification algorithms and concluded random forest is most robust in mapping 
land cover over large areas by producing the highest classification accuracy with the shortest training 
time, as well as being less affected by parametrisation and the number of training samples. 
Therefore, pixel-based classification with the random forest classifier was applied using the 
“randomForest” package (Liaw & Wiener, 2002) in statistical package R (R Core Team, 2013).  
 
Due to high dimensional input features and target species classes, a feature selection process using 
the “VSURF” package (Genuer et al., 2015) was applied to eliminate redundant variables and reduce 
computation time for classification. Based on findings from Speiser et al. (2019), VSURF 
outperformed other feature selection methods for random forest classification. After the 
classification, a majority filter (with 8 x 8 neighbours) was applied to the classification image to 
minimise the occurrence of small isolated pixels.  
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The accuracy of classification was assessed by using the most common approach - the confusion 
matrix (Congalton, 2001), which compares the classified and truth species classes based on the 
validation dataset. Measures such as the overall accuracy, the producer’s and user’s accuracies 
for individual classes were calculated. The overall accuracy indicates the proportion of pixels that 
were correctly classified out of all the truth pixels. The producer’s accuracy, which is related to 
omission error, reflects the probability of a species class being correctly classified. The user’s 
accuracy relates to the commission error, which represents the probability that a pixel classified 
into a given species actually represents that species on the ground. 
 

Area comparison  

The output classified image was clipped to the extent of the small-scale alternative species in the 
East Coast region which was mapped manually so that the area of each species class can be 
calculated within the mapped extent. The areas were then aggregated with the summary of the 
large-scale alternative species to provide a full area description of the alternative species in East 
Coast.  

 

Results and Discussion  

Spectral signature of species  

 
Figure 1: Spectral signature of different species on Sentinel-2 imagery  

 
Different land covers absorb, emit and reflect different wavelengths of the electromagnetic spectrum. 
A predictive model known as "spectral signatures" was created using multivariate statistical 
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algorithms using truthing data and multi-spectral satellite data for the same sites in order to 
categorise the satellite image into different types of land cover (Laborte et al., 2010).  
 
Prior to species classification, the spectral signature of each tree species indicating how species’ 
reflectance differs between the wavelength bands, was examined to understand the potential 
separability of different species (Error! Reference source not found.). The spectral signature 
suggests that generally, all tree species reflect similarly within the visible wavelength (400-700 nm) 
but illustrate the higher separation between the reflectance in the red edge and NIR spectrum (700-
1300 nm). The SWIR spectrum (1300-2500 nm) also indicated some level of separation of 
reflectance. The spectral signature of all species showed a preliminary possibility of separating tree 
species at the RE, NIR and SWIR spectra. The reflectance characteristics of individual leaf 
components play the main role in how radiation interacts with vegetation. Chlorophyll, carotenoids, 
and anthocyanins, which are pigments found in leaves, absorb incident light to produce the majority 
of the visible spectrum's signal. Water absorption is the main factor in the NIR spectrum. Water has 
a major role in determining the reflectance in the SWIR region, although nitrogen and different types 
of carbon also contribute significantly to the reflectance (Asner, 1998). 
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Input Features  

 
Figure 2: The importance score of the selected variables for each species class 

 
After running VSURF variable selection process, ten out of 55 input variables were selected for 
species classification and they also contributed differently to the species classification (Error! 
Reference source not found.). According to the importance score of all variables, DEM was the 
most useful variable for classifying all minor species, suggesting that elevation plays an important 
role in differentiating plantation species. DEM was also found as the most important contributor to 
land cover and forest species classification in other studies (Ye et al., 2021; Zhang & Yang, 2020). 
Following DEM, one textural feature GLCM_Mean was also identified as an important variable. 
Ghosh and Joshi (2014) and Ye et al. (2021) also discovered that GLCM-Mean contributed to 
mapping forest mapping due to the its ability to capture texture data while the vegetation composition 
was complicated. 
 
Vegetation Indices (VIs) combine the surface reflectance at two or more wavelengths to emphasise 
a specific characteristic of vegetation, such as photosynthetic activity and canopy structure. They  
enhance the sensitivity of spectral properties of vegetation while reducing spectral disturbance 
(Glenn et al., 2008). VIs describe the biochemical and physiological properties of vegetation that 
could contribute to the vegetation classification. Five out of the ten variables were vegetation indices 
(B_RE705, GI, RENDVI, MNDWI and NIR_RE705).  
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Two original bands, RE705 and SWIR1610 were also identified as useful variables, which shows the 
consistency of findings from the spectral signature of species. RE and SWIR bands were also 
identified as high-value bands for forest species mapping (Immitzer et al., 2016) and land cover 
classification (Schuster et al., 2012). 
 

Classification results 

 
The species classification with all 55 input variables achieved an overall accuracy of 0.929 (Table 
5), indicating 92.9% of the validation pixels were correctly classified. Douglas-fir and eucalyptus 
were the two most accurately classified alternative species, with 97.2% and 94% of producer’s 
accuracies respectively, and 92.4% and 91.1% of user’s accuracies respectively. These two 
classes also contain more truthing data than other classes. On the other hand, acacia has the 
lowest producer’s accuracy (62.1%), which is likely due to less truthing data.    
 
All classes achieved high user’s accuracies (over 90%) except other pine species, indicating 90% 
of the pixels classified actually represent these species in the real world.  
 
The overall classification accuracy using the selected variables was the same as using all input 
variables (Table 6). The differences in the user’s and producer’s accuracies were also minimal. 
This indicates the redundancy of input variables when using all 55 variables. Therefore, the 
classification algorithm with selected variables was chosen to be applied to the whole study area, 
due to similar accuracy and reduced computation time.  
 
The overall classification accuracy for classifying multiple tree species was comparable with other 
studies using Sentinel-2 imagery, e.g. Bolyn et al. (2018) classified 10 tree species with an overall 
accuracy of 88.9%, Persson et al. (2018) produced an overall accuracy of 88.2% for classifying five 
tree species in a Swedish forest,  Grabska et al. (2019) achieved up to 92.38% overall accuracy for 
classifying four tree species.  
 
Overall, this study successfully classified forest species in highly fragmented forests over a large 
geographic area. However, it is challenging to achieve high accuracies for certain tree species (e.g. 
acacia and other species). Similarly, Immitzer et al. (2016) also observed lower classification 
accuracies for those tree species which are either uncommon in the study area or within mixed 
stands.  
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Table 5: Confusion matrix of classification with all input features. It was produced based on 30% validation dataset. PA stands for producer’s accuracy and UA stands for user’s accuracy. Overall 
accuracy is 0.929 and kappa coefficient is 0.910. 

  Reference                       

Prediction Acacia Cypress Douglas-fir Eucalyptus Larch 
Other 
species 

Other 
pine Poplar Radiata Redwood Total  UA 

Acacia 607 24 13 14 1 1 10 0 0 1 671 0.905 

Cypress 37 3925 40 32 38 26 66 3 22 75 4264 0.920 

Douglas-fir 174 229 17441 147 57 130 436 20 96 145 18875 0.924 

Eucalyptus 99 81 106 6871 20 74 159 18 56 55 7539 0.911 

Larch 2 18 5 5 786 12 1 4 0 2 835 0.941 

Other species 19 19 25 45 4 2334 43 5 10 13 2517 0.927 

Other pine 19 68 166 51 31 36 2578 33 17 41 3040 0.848 

Poplar 0 0 0 1 5 0 16 588 0 6 616 0.955 

Radiata 15 52 87 107 4 13 61 0 11633 26 11998 0.970 

Redwood 5 33 52 33 8 2 16 10 3 2038 2200 0.926 

Total 977 4449 17935 7306 954 2628 3386 681 11837 2402 52555  

PA 0.621 0.882 0.972 0.940 0.824 0.888 0.761 0.863 0.983 0.848   
0.929 

(0.910) 

 
Table 6: Confusion matrix of classification with 12 selected variables. It was produced based on 30% validation dataset. PA stands for producer’s accuracy and UA stands for user’s accuracy. 
Overall accuracy is 0.929 and kappa coefficient is 0.910. 

  Reference                     

Prediction Acacia Cypress 
Douglas-
fir Eucalyptus Larch 

Other 
species 

Other 
pine Poplar Radiata Redwood Total  UA 

Acacia 637 18 13 16 2 2 5 0 2 1 696 0.915 

Cypress 29 3975 60 33 42 28 66 3 22 65 4323 0.920 

Douglas-fir 157 180 17378 146 62 129 386 19 83 159 18699 0.929 

Eucalyptus 85 75 116 6827 23 88 140 20 50 56 7480 0.913 

Larch 3 19 7 14 780 7 12 1 0 5 848 0.920 

Other species 27 22 36 49 4 2319 52 4 3 12 2528 0.917 

Other pine 23 68 163 50 20 38 2612 21 21 36 3052 0.856 

Poplar 0 1 1 1 8 0 22 601 0 6 640 0.939 

Radiata 12 51 103 132 3 13 64 1 11652 26 12057 0.966 

Redwood 4 40 58 38 10 4 27 11 4 2036 2232 0.912 

Total 977 4449 17935 7306 954 2628 3386 681 11837 2402 52555  

PA 0.652 0.893 0.969 0.934 0.818 0.882 0.771 0.883 0.984 0.848   
0.929 

(0.910) 
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Area Comparison  

Table 7: Area summary of alternative species in East Coast wood supply region. The small-scale areas were estimated 
using the classification, and the large-scale areas were from survey.  

Species Small-scale (ha) Large-scale (ha) Total (ha) 

Acacia 72 26 98 

Cypress 191 90 281 

Douglas-fir 1,604 138 1,742 

Eucalyptus 1,388 196 1,584 

Larch 196 30 226 

Other pine 139 153 292 

Other species 622 71 693 

Poplar 59 0 59 

Redwood 311 67 378 

Total (ha) 4,582 771 5,353 

 
 
The manual mapping resulted in 4,587 ha of over 0.5 ha alternative species in East Coast. After 
clipping the classification result to the boundary, 4,582 ha of alternative species were left 
suggesting 5 ha of forests were lost during the clipping process. Overall the classification suggests 
the most common alternative species are Douglas-fir and Eucalyptus, accounting for 35% and 30% 
of the total small-scale alternative species resources. Acacia and poplar are the least common 
alternative species identified, with 72 ha and 59 ha estimated respectively (Table 7).  
 
 
Table 8: The total area of alternative species compared in East Coast wood supply region with NEFD 2021 area. The 
area estimated in this study include both large-scale and small-scale. Other species are aggregated due to different 
species class definition in NEFD.  

Alternative species   

NEFD Area  
(ha) 

Area from this study over 0.5 ha 
(ha) 

Area from this study over 1 ha 
(ha) 

Douglas-fir 1,987 1,742 1,443 

Cypress species 282 281 273 

Eucalypt 492 1,584 1,325 

Other softwoods 887 897 844 

Other hardwoods 925 850 752 

Total  4,573 5,353 4,637 

 
 
 
When aggregated with the area provided by the large-scale owners, the total area of each species 
group can be obtained (Table 7). In total 5,353 ha of alternative species were estimated in the East 
Coast region. This is 780 ha (17%) more than the NEFD-reported area (Table 8). The area of 
cypress, other softwoods and hardwoods are similar to the NEFD area. However, Douglas-fir was 
245 ha (12%) less than the NEFD area and the estimated eucalyptus was three times more than 
the NEFD area. Overall, it appears that NEFD underestimated the area of small-scale alternative 
species. However, the minimum forest size in the NEFD is 1 hectare whereas in this study a 
minimum size of 0.5 ha was adopted. If only over 1-hectare forests are included in the estimation, 
in total 4637 ha of alternative species are mapped in the East Coast region. That is 64 ha more 
than the NEFD-reported area.  
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Limitation and Future Research  

This study applied a random forest classifier to automatically classify species within pre-defined 
alternative species boundaries. The region of interest, East Coast, did not contain enough truthing 
data so the truthing data collected from Stage2 (CNI and Hawke’s Bay) were used.  
In addition, PSP data and NZDFI data were also added to increase the size of the truthing data.  
 
Similar to findings in Stage 2b, the larger the truthing dataset, the higher the classification 
accuracy. Douglas-fir and Eucalyptus contained more truthing data and they are the most 
accurately classified species. Species like acacia, other pine species and other alternative species, 
which are less representative and have less truthing data, were classified less accurately. 
However, it is challenging to acquire more truthing data for those species as there is not much area 
available.  
 
Another limitation of the study is that pre-defining the geographic boundaries of alternative species 
is required to define the extent of classification. Without the pre-defined boundaries, the 
classification approach tends to map other land covers as alternative species plantations due to a 
similar spectral signature.   
 
This approach using random forest classifier and Sentinel imagery performed well in the East 
Coast region, which again confirms the robustness of the approach. However, given the 10-m 
resolution, it is challenging to classify at the individual species level. There is an opportunity to 
perform classification using higher resolution imagery, such as Worldview imagery or UAV images 
to classify more detailed species. With truthing data for individual species and higher resolution 
imagery, it might be possible to classify individual species within the same genus (e.g. eucalyptus 
species). Being able to differentiate at individual species level would improve the usefulness of 
undertaking a national inventory. 
 
Given the ongoing acquisition of LiDAR data under the LINZ National Elevation Programme, there 
is also an opportunity to improve the classification with LiDAR-derived data such as elevation and 
canopy height model. As LiDAR data is only available in the East Coast region but not for the CNI 
and Hawke’s Bay region, this project was unable to utilise LiDAR in the classification. However, 
once the national coverage of LiDAR becomes available, LiDAR-derived metrics can be used and 
potentially improve the species classification. It also adds value by estimating stand variables 
(such as height and volume) of alternative species given that inventory data would be available for 
ground truthing.  

Conclusions  

This study confirms the usefulness of random forest classification with Sentinel imagery in 
classifying alternative species at a regional level and achieved high classification accuracies for 
most species. The results are similar to the findings in Stage 2. The classification accuracy of using 
a machine learning classifier highly depends on the availability of truthing data. In total, 4582 ha of 
small-scale alternative species were classified for East Coast and a majority of them are Douglas-
fir and Eucalyptus. A truthing database can be built up and this approach could be applied to all 
regions of New Zealand.  
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Appendix  

 
Appendix 1: Input variables used in Random forest classification  

Abbreviation Name  

Spectral bands  

Blue Blue band 

Green Green band 

Red Red band 

RE705 Red Edge 705 nm 

RE740 Red Edge 740 nm 

RE783 Red Edge 783 nm 

NIR842 Near Infrared 842 nm 

NIR865 Near Infrared 865 nm 

SWIR1610 Short-wave infrared 1610 nm 

SWIR2190 Short-wave infrared 2190 nm 

Textural   

GLCM_Mean  Local mean of Gray-Level Co-Occurrence Matrix (GLCM) 

GLCM_Variance Local variance of GLCM 

GLCM_Homogeneity GLCM Homogeneity 

GLCM_Contrast GLCM Contrast  

GLCM_Dissimilarity GLCM Dissimilarity 

GLCM_Entropy GLCM Entropy 

GLCM_2ndMoment GLCM 2nd Moment 

GLCM_Correlation GLCM Correlation 

Phenology   

Mean EVI2 The average Enhanced Vegetation Index 2 (EVI2) 

EVI2 phase The phase of EVI2 

EVI2 amplitude The amplitude of EVI2 

Topography   

DEM  Resampled 10 m Digital Elevation Model  

Vegetation Indices   

EVI2 Enhanced Vegetation Index2 

GEMI Global Environmental Monitoring Index 

GARI Green Atmospherically Resistant Index 

GCI Green Chlorophyll Index 

GI  Greenness Index 

GNDVI Green Normalised Difference Vegetation Index 

LAI Leaf Area Index 

MCARI_I Modified Chlorophyll Absorption Ratio Index – Improved 

MNLI Modified Non-Linear Index 

MNDWI Modified Normalised Difference Water Index 

MSR Modified Simple Ratio 

MSAVI2 Modified Soil Adjusted Vegetation Index 2 

MTVI_I Modified Triangular Vegetation Index – Improved 

NDVI  Normalised Difference Vegetation Index  

OSAVI Optimized Soil Adjusted Vegetation Index 

RENDVI Red Edge Normalised Difference Vegetation Index 

REPI Red Edge Position Index 

RGRI Red Green Ratio Index 

RDVI Renormalised Difference Vegetation Index 

SAVI Soil Adjusted Vegetation Index 

NIR_R Simple Ratio NIR/red 

B_RE705 Simple Ratio blue/RE705 

B_RE740 Simple Ratio blue/RE740 

B_RE783 Simple Ratio blue/RE783 

NIR_B Simple Ratio NIR/blue 

NIR_G Simple Ratio NIR/green 

N_RE705 Simple Ratio NIR/RE705 

N_RE740 Simple Ratio NIR/RE740 

N_RE783 Simple Ratio NIR/RE783 

TCARI Transformed Chlorophyll Absorption Reflectance Index 

TVI Triangular Vegetation Index 
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Abbreviation Name  

VARI Visible Atmospherically Resistant Index 

WDRVI Wide Dynamic Range Vegetation Index 
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